Contribution of muscle series elasticity to maximum performance in drop jumping.

نویسندگان

  • Harald Böhm
  • Gerald K Cole
  • Gert-Peter Brüggemann
  • Hanns Ruder
چکیده

The contribution of muscle in-series compliance on maximum performance of the muscle tendon complex was investigated using a forward dynamic computer simulation. The model of the human body contains 8 Hill-type muscles of the lower extremities. Muscle activation is optimized as a function of time, so that maximum drop jump height is achieved by the model. It is shown that the muscle series elastic energy stored in the downward phase provides a considerable contribution (32%) to the total muscle energy in the push-off phase. Furthermore, by the return of stored elastic energy all muscle contractile elements can reduce their shortening velocity up to 63% during push-off to develop a higher force due to their force velocity properties. The additional stretch taken up by the muscle series elastic element allows only m. rectus femoris to work closer to its optimal length, due to its force length properties. Therefore the contribution of the series elastic element to muscle performance in maximum height drop jumping is to store and return energy, and at the same time to increase the force producing ability of the contractile elements during push-off.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuromuscular adaptations to 4 weeks of intensive drop jump training in well-trained athletes

This study examined the effects of 4 weeks of intensive drop jump training in well-trained athletes on jumping performance and underlying changes in biomechanics and neuromuscular adaptations. Nine well-trained athletes at high national competition level within sprinting and jumping disciplines participated in the study. The training was supervised and augmented feedback on performance was used...

متن کامل

Simulation of Muscle-Tendon Complex During Human Movements

In a stretch-shortening cycle (Norman & Komi, 1979; Fukashiro & Komi, 1987) caused by a countermovement, viscoelastic characteristics of the muscle-tendon complex (MTC) play an important role in enhancing both the effectiveness and the efficiency of human performance. Of particular importance is the ability of these tissues to store energy when deformed (stretched) by external force and to reco...

متن کامل

Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain

In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (...

متن کامل

Effects of Neuromuscular Strength Training on Vertical Jumping Performance— A Computer Simulation Study

The purpose of this study was twofold: (a) to systematically investigate the effect of altering specific neuromuscular parameters on maximum vertical jump height, and (b) to systematically investigate the effect of strengthening specific muscle groups on maximum vertical jump height. A two-dimensional musculoskeletal model which consisted of four rigid segments, three joints, and six Hill-type ...

متن کامل

Effect of increased load on vertical jump mechanical characteristics in acrobats.

In this study, we attempt to answer the following question: To what degree the higher muscular activity determined by increased load in the extension phase (eccentric muscle action) of vertical jump affects its efficiency? Ten high performance acrobats participated in this investigation. The acrobats performed tests that consisted of five single "maximal" standing vertical jumps (counter moveme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied biomechanics

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2006